Methods A spot survey done at the University hospital of Leicester’s maternity department, one of the largest tertiary referral units in the Britain, with 11 000 deliveries a year. All the midwives and doctors where given questionnaires. In total 41 staff took the survey: 4 senior midwives, 16 junior midwives, 4 senior registrars, 7 junior registrars and 9 consultants.

Results All consultants knew what the dashboard was, however only 5% of junior midwives and 50% of junior registrars knowing what the dashboard was. 76% of staff did not know how to access the dashboard. 78% of the consultants knew what outcomes were monitored on the dashboard while just 5% of junior midwives knew what outcomes were monitored. 61% of staff did not understand how the traffic light system worked. All the consultants had an idea of our caesarean section rate (28.4%), while only 75% of the senior registrars knew, none of the junior midwives knew the rates. The results showed a lack of awareness among the junior grades and therefore a lack of direct impact of the dashboard on their practice.

Conclusion The survey highlights the lack of awareness of the dashboard, its contents and its application to work practice. Daily updates about key targets on the dashboard during multidisciplinary handovers and targeted teaching sessions addressing risks identified will improve staff awareness and quality of patient care.

Suggestions for improvement by staff include the creation of a physical dashboard on the labour ward with current stats on it, to keep staff informed.

Category J: Video Presentations (E-Poster):
Medical Education, Simulation

JV6206
Improving clinical outcomes and communication through multidisciplinary obstetric and midwifery simulation
Ye, XM; Gbadamosi, J; Bayer, A-S; Jackson, J; Anderson, M; Letchworth, P; Kapila, D; Duffy, S

Intervention Simulation is a widely accepted training tool, used to improve procedural skills and develop leadership and teamwork skills within a controlled environment. Multidisciplinary team (MDT) training has been proven to optimize team relationships and improve patient safety. The Multidisciplinary Obstetric and Midwifery Simulation (MOMS) course aims to improve patient safety through training of the MDT to manage simulated obstetric emergencies. MOMS has been used at Chelsea and Westminster Hospital since 2010. Additionally, the MOMS course is provided internationally, in the countries of India, Ethiopia, South Africa and Uganda. The course is updated annually using national guidelines and reports (MBRACE, RCOG, NICE). It is evaluated using the Kirkpatrick’s 4 level training evaluation model (Stage 1- participant reaction, stage 2- learning, stage 3- behaviour and stage 4- outcome). Participants in 2010–2014 showed improved clinical knowledge and confidence. We report updated outcomes from data collected in 2010–2017.

Methods From April 2010-September 2017 over 2000 candidates participated in the MOMS course at Chelsea and Westminster Hospital. During this time, data was collected prospectively from pre- and post-course questionnaires completed by participants. Participants included obstetricians, midwives, anaesthetists, nurses and students with varying levels of clinical experience. The questionnaires included MCQs designed to test key areas of clinical knowledge. Participants were required to score their ‘confidence on a typical day’ as well as ‘confidence in stressful situations’. Additional leadership and teamwork components were added in 2017.

Results Comparison of pre- and post-course MCQ results from 2010–2017 showed statistically significant improvements with feedback consistently remaining positive. MCQ scores significantly increased every year, with an average increase of 1.62 across the 8 years. Confidence scores on ‘a typical day’ and a ‘stressful day’ increased by an average of 1.29 and 1.00 respectively. In 2017, leadership scores increased by 1.04. Participants reattend the course every year and continue to increase their scores. There was no relationship between clinical experience and a greater increase in MCQ score (r = 0.15), nor between clinical experience and a higher pre-course MCQ score (r = 0.22).

Conclusion We continue to show that MOMS is an effective method of MDT training. It is found to increase clinical knowledge and improve confidence and leadership in different situations. It has also received positive feedback in the development of teamwork and communication skills. MOMS continues to benefit all members of staff, regardless of seniority and previous course attendance.
It is also not unusual for retroperitoneal tumours to be mistaken for gynaecological pelvis tumours. Hence, operated by gynaecological surgeons and only proven to be wrong intraoperatively. In this video presentation, we demonstrate a step-wise approach to accessing the retroperitoneal space, followed by identification of the ureters, major vessels and nerves. This will be beneficial for trainees in obstetrics and gynaecology at various levels of training. Teach trainees a standardised process of performing a diagnostic laparoscopy and caesarean section, eliminate significant variation in practice and ultimately improve patient safety. The videos will also give trainees more confidence when watching or performing the respective surgical procedure for the first time. Further free of charge resources like this are needed to help aid clinical teaching.

Funding £6000 was obtained from the School Based Study Learning Fund (Eastern Deanery) after successful application.

JV6505

Educating obstetrics and gynaecology trainees through multimedia; diagnostic laparoscopy and caesarean section

Karavadra, B; Haestier, A; Morris, E

Obstetrics & Gynaecology, Norfolk & Norwich University Hospital, Norwich, UK

Introduction Laparoscopy is the gold standard investigation for the confirmatory diagnosis and assessment of many gynaecology conditions including endometriosis. Caesarean section is one of the most common operations performed in the United Kingdom. However, there are a limited number of reliable, evidence based and free of charge online resources for trainees for such procedures.

Methods Two separate videos detailing the step-by-step process of safely and methodically performing a diagnostic laparoscopy and caesarean section was created as a clinical teaching aid primarily for junior specialty trainees in obstetrics and gynaecology in the United Kingdom. The video includes detail on preparing the patient for a laparoscopy (or caesarean) in theatre, the equipment required, the common techniques used to enter the abdomen and pelvis, as well as a methodical way to assess for normal pelvic anatomical landmarks (at laparoscopy). The different sub-sections for each operation are indexed as separate video clips for ease of reference and thereby allowing trainees to ‘pick and choose’ sections of interest. The laparoscopy video also describes the minimum picture set required for a diagnostic laparoscopy and therefore highlighting the importance of clear medical documentation. We worked closely with the hospital Medical Illustration department to create the videos. The videos were shown to 35 trainees and an evaluation form completed.

Results Following stage one of this project, an initial focus group with five junior doctors was conducted whereby they evaluated the contents and relevance to clinical training. This video will be placed on the deanery website for trainees to access and from which feedback will be gathered and relevant changes made. The evaluation of both videos by 35 trainees showed that 95% of them thought that the videos were ‘clear and understanding’ and 98% thought it is a useful resource to watch prior to assisting or performing the procedure.

Conclusion To our knowledge, there are no published research papers detailing the step by step process involved in mapping pelvic pathology laparoscopically. This educational resource will

PV6058

Combined approach vaginal and laparoscopic excision of Gynemesh sub-urethral sling

Cash, S; Prabhath, W

Department of Gynaecology, Women’s and Children’s Hospital, Adelaide, Australia

Objective To demonstrate the anatomy and technique of a combined approach excision of polypropylene sub-urethral sling.

Design Patient case report and video demonstration.

Setting Tertiary gynaecology unit location in Metropolitan Adelaide, Australia.

Patient This 45-year-old female presented with a history of chronic pelvic pain and associated groin pain which was exacerbated following placement of a retropubic sub-urethral sling for management of stress-urinary incontinence. After a number of conservative approaches to management of symptoms the patient proceeded to a complete excision of TVT.

The technique A combined approach was utilised. Commencing first from the vaginal approach a vertical incision is made at the anterior vaginal wall at the mid urethra. The vaginal tissue is dissected free to expose the tape. Leaving the tape intact, the dissection continues paraurethrally toward the endopelvic fascia tracking along the identified TVT. The endopelvic fascia is opened surrounding the TVT and the lower portion of the tape is cut to removal all vaginal portion intact. After routine laparoscopic entry, the space of retzius is entered to exposure the tape running posterior to the pubic symphis. Using laparoscopic scissors the surrounding tissue is dissected free to mobilise the tape for removal. The dissection continues inferiorly to meet the endopelvic fascia anteriorly to the abdominal wall to ensure the tape is removed complete. The excised mesh is sent for histopathological demonstration to assess for peripheral nerve fibre integration.

Conclusion Utilising a combined approach ensures accurate dissection to achieve complete removal of mesh while minimising blood loss and aiding in rapid Postoperative recovery. The adjunct use of histopathological examination is important to aid in the understanding of mesh complications and associated pain syndromes related to polypropione graft materials.