ISUOG Practice Guidelines: role of ultrasound in screening for and follow-up of pre-eclampsia

Clinical Standards Committee

The International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) is a scientific organization that encourages sound clinical practice, and high-quality teaching and research related to diagnostic imaging in women’s healthcare. The ISUOG Clinical Standards Committee (CSC) has a remit to develop Practice Guidelines and Consensus Statements as educational recommendations that provide healthcare practitioners with a consensus-based approach, from experts, for diagnostic imaging. They are intended to reflect what is considered by ISUOG to be the best practice at the time at which they were issued. Although ISUOG has made every effort to ensure that Guidelines are accurate when issued, neither the Society nor any of its employees or members accept any liability for the consequences of any inaccurate or misleading data, opinions or statements issued by the CSC. The ISUOG CSC documents are not intended to establish a legal standard of care, because interpretation of the evidence that underpins the Guidelines may be influenced by individual circumstances, local protocol and available resources. Approved Guidelines can be distributed freely with the permission of ISUOG (info@isuog.org).

INTRODUCTION

Hypertensive disease of pregnancy affects up to 10% of pregnant women and the pooled global incidence of pre-eclampsia (PE) is approximately 3%. Significant variations between developed and developing countries can be attributed to true differences or differences arising from data acquisition. PE and its complications are a major contributor to maternal and perinatal morbidity and mortality worldwide. Given that timely and effective care can improve the outcome of PE, the development of effective prediction and prevention strategies has been a major objective of prenatal care and of research.

PE is a multisystemic disease of multifactorial origin: it involves defective placentation, oxidative stress, autoimmunity, platelet and thrombin activation, intravascular inflammation, endothelial dysfunction, an imbalance in angiogenesis and maternal cardiac maladaptation. Defective placental invasion is associated strongly with most cases of early and severe PE. In contrast, defective placentation seems to be less important for the development of PE that manifests later in pregnancy, for example after 34 weeks. Compared with pregnancies affected by early-onset disease, in those complicated with PE at or near term, placentae have a significantly lower frequency of histological abnormalities, and maternal factors (e.g. metabolic syndrome or chronic hypertension) have a relatively greater significance. Differences between early- and late-onset PE are also seen in risk factors, maternal vascular responsiveness, screening performance and prevention effectiveness.

Increasing insight into the pathophysiology of PE is reflected in current screening strategies, which are based on history, demographics, biomarkers (including blood pressure) and uterine artery Doppler.

There are currently more than 10 000 PubMed-indexed articles related to PE screening, illustrating the vast interest in this topic. Fewer than one-fifth of these deal with early screening, this being a development of the last decade. The aim of these Guidelines is to review the latest evidence and, when possible, provide evidence-based recommendations regarding the role of ultrasound in screening and follow-up of PE. The Guidelines focus on the technical/clinical aspects of screening, without extending to health economics and policy issues including the advisability and cost-effectiveness of screening. Moreover, these Guidelines were developed with the assumption that the resources required for implementation of screening and follow-up (equipment, examiners, expertise) are available. The steps and procedures described in these Guidelines are not intended to act as a legal standard for clinical service.

TERMINOLOGY: SCREENING VS PREDICTION

Although the terms ‘screening’ and ‘prediction’ are frequently used interchangeably, screening is in fact a wider process, beginning with invitation of a population to participate and ending with treatment for individuals identified as being at high risk. Prediction, or the calculation of risk for disease, is an integral element of the screening process, but it is not equivalent to screening,
as the latter also involves an intervention that is offered to individuals at high risk, and aims to alter the natural history of the screened condition and ultimately to improve the outcome. Screening in prenatal care has been commonly used to offer the option of timely termination of pregnancy to parents of fetuses with untreatable conditions; this is an extension of the World Health Organization’s scope of screening, which is prevention of disease. For the purpose of these Guidelines, in the context of PE, ‘screening’ is the preferred term when identification of cases at risk may lead to prevention of its development, whereas ‘prediction’ is the preferred term when there is no evidence that identification of women at risk will eventually improve their outcome.

RELEVANT INFORMATION AVAILABLE TO THE EXAMINER

Recommendation

- Examiners involved in screening for PE should have up-to-date knowledge regarding major risk factors for PE (GOOD PRACTICE POINT).

Given that ultrasound screening for PE should not be isolated from the general concept of prenatal care, it is advisable that professionals who screen for PE have up-to-date knowledge about proven risk factors and aim to identify them during screening. A global assessment of risk should encompass four broad areas, including personal risk profile (including age, ethnicity, parity, smoking, medical and obstetric history and conception method), metabolic risk profile (including body mass index (BMI) and history of diabetes), cardiovascular risk profile (including existing cardiovascular conditions and measurement of mean arterial blood pressure) and placental risk profile (including uterine artery Doppler and maternal serum biomarkers). As described in the ISUOG Practice Guidelines on the use of Doppler ultrasonography in obstetrics, the systolic/diastolic ratio (S/D), resistance index (RI) and PI are the three best-known indices with which to describe arterial flow-velocity waveforms. PI is the index most commonly used; its advantage over RI in evaluation of the uterine artery Doppler waveform is that PI includes in its calculation the averaged value of all maximum velocities during the cardiac cycle, rather than just two points in the cardiac cycle as for RI. Furthermore, PI is more stable and it does not approach infinity when there are absent or reversed diastolic values.

Uterine artery notching has also been used in screening for PE, the presence of bilateral notches being associated with indications of maternal endothelial dysfunction (lower flow-mediated dilatation of the brachial artery) despite its theoretical plausibility as a screening marker, bilateral notching is not uncommon in normal first-trimester pregnancies, occurring in 43% of cases, which reduces its specificity. Likewise, uterine artery notching in the second trimester has similar sensitivity to that of increased PI, but for a higher screen-positive rate, and there may be a degree of subjectivity in defining notching, which further limits the value of this finding as a screening marker.

A 2008 meta-analysis indicated that increased PI, alone or combined with notching, is the most predictive Doppler index for PE. A considerable amount of evidence published since then indicates the superiority of mean uterine artery PI as the preferred Doppler index for PE screening, and this is the index used for screening and prevention in the first trimester.

First trimester

Recommendation

- Doppler examination of the uterine arteries at 11 + 0 to 13 + 6 weeks can be performed either transabdominally or transvaginally, according to local preferences and resources (GOOD PRACTICE POINT). Technical advice

- Screening by first-trimester uterine artery PI > 90th centile detects 48% of women who will develop early PE and 26% of those who will develop any PE, for a 10% screen-positive rate (EVIDENCE LEVEL: 2++).

First-trimester Doppler examination of uterine arteries: technique. Doppler examination of the uterine arteries has been studied most extensively in the period from 11 + 0 to 13 + 6 weeks. This is a common time for first-trimester ultrasound examination in many countries, and therefore practical in terms of logistics. Earlier assessment has not been studied extensively because trophoblast invasion is not yet sufficiently advanced as to be assessable.

For the first-trimester transabdominal assessment of uterine artery resistance, a midsagittal section of the uterus and cervix is obtained initially. Using color flow mapping,
the transducer is gently tilted sideways, so that the uterine arteries are identified with high-velocity blood flow along the side of the cervix and uterus (Figure 1). The pulsed-wave Doppler sampling gate should be narrow (set at approximately 2 mm) and positioned on either the ascending or descending branch of the uterine artery at the point closest to the internal cervical os, with an insonation angle < 30°. In order to verify that the uterine artery is being examined, the peak systolic velocity should be > 60 cm/s. The PI is measured when at least three identical waveforms are obtained. Detailed methodology can be found in a practical advice paper published in this journal. Following this approach, uterine artery PI can be measured in more than 95% of cases.

![Figure 1: Transabdominal Doppler ultrasound examination of uterine artery in the first trimester. The uterine artery loop is located in a paracervical section, and at least three identical waveforms are recorded, using an insonation angle as close to 0° as possible.](image)

Transvaginal assessment of uterine artery resistance follows the same principles. The woman is placed in the lithotomy position, with her bladder empty, and a transvaginal probe is used to obtain a sagittal view of the cervix. The probe is then moved laterally until the paracervical vascular plexus is seen, and the uterine artery is identified at the level of the internal cervical os. Measurements are taken with an angle of insonation < 30°.

Recommendation

- Standardized methodology, as described in these Guidelines, should be followed for assessment of the uterine artery Doppler indices (GOOD PRACTICE POINT).

Adherence to a standardized methodology is essential to ensure reproducible measurements. Studies evaluating the reproducibility of this technique have shown interobserver intraclass/concordance correlation coefficients of 0.80–0.85. However, limits of agreement were found to be as high as ±35% for the transvaginal and ±40% for the transabdominal approach. On this basis, the reproducibility of the method should be interpreted as being poor to moderate. Besides differences caused by observers, Doppler indices may change during an examination, due to factors such as uterine contractions and changes in heart rate. Although the effect of such factors cannot be prevented, adherence to a standardized protocol of examination is imperative to minimize the operator-dependent variability, as systematic error in measurements can affect the screen-positive rate.

Technical advice

- The 95th centile for mean uterine artery PI obtained using a transabdominal approach between 11 + 0 and 13 + 6 weeks is 2.35 (EVIDENCE LEVEL: 2+).
- Uterine artery resistance is higher on transabdominal compared with transabdominal measurement; the 95th centile for mean uterine artery PI obtained using a transvaginal approach is approximately 3.10 for crown–rump lengths (CRL) up to 65 mm, gradually declining with increased CRL thereafter (EVIDENCE LEVEL: 2+).
- The uterine artery PI may also be affected by maternal factors, including ethnic origin, BMI and previous PE (EVIDENCE LEVEL: 2++).

Recommendation

- Given that maternal factors can affect uterine artery PI, its inclusion in a multifactorial screening model should, whenever feasible, be preferred over its use as a standalone test with absolute cut-offs (GRADE OF RECOMMENDATION: B).

The 95th centile of mean uterine artery PI obtained using a transabdominal approach is about 2.35 for the period 11 + 0 to 13 + 6 weeks, with no change or only a small trend to decrease over this period. In two comparative studies, the transvaginal approach gave significantly higher readings compared with the transabdominal approach, with mean PIs of 1.98 vs 1.83 and 1.60 vs 1.52. The reason for this may be that transvaginal ultrasound allows closer proximity of the transducer to the vessel and lower insonation angles. The 95th centile of the mean uterine artery PI obtained transvaginally has been reported as approximately 3.10 for CRLs up to 65 mm, progressively declining thereafter to reach 2.36 at a CRL of 84 mm.

In women who do not develop PE, uterine artery PI may be affected by maternal factors, including ethnic origin (African origin is associated with increased PI), BMI (decreasing PI with increasing BMI) and previous PE (associated with increased PI). The association between decreasing PI and increasing BMI is not clear; the vasodilatory effect of increased levels of estrogens in these women on the uterine circulation has been postulated as a potential cause. An absolute numerical cut-off for uterine artery PI may, therefore, not reflect accurately uterine artery resistance, and it has been suggested that first-trimester uterine artery PI should be expressed as multiples of the median (MoM) rather than absolute values.
Recommendation

- Mean uterine artery PI should be the Doppler index of choice for screening in the first trimester (GRADE OF RECOMMENDATION: B).

In one of the early studies using the current standard methodology for assessing uterine artery Doppler in the first trimester, a mean PI > 95th centile had a sensitivity of 27% for PE and a sensitivity of 60% for PE requiring delivery before 32 weeks. Subsequent studies used the lowest uterine artery PI (i.e. PI of the side with least resistance) because the point estimates for the area under the receiver–operating characteristics curve (AUC) were marginally better when the lowest rather than the mean PI was used in the regression model (0.91 vs 0.90 for early PE). However, the confidence intervals for the AUCs overlapped, and the superiority of the lowest PI was not confirmed by another large study (AUC, 0.79 for mean and 0.76 for lowest PI for the outcome of early PE, with overlapping CIs). Both techniques are acceptable, but the mean uterine artery PI is the index most commonly used for first- and second-trimester uterine artery Doppler examination, and the default reference values in most commercial software apply to this.

Bilateral notching has been associated with a 22-fold increased risk for PE and an almost nine-fold increased risk for small-for-gestational-age (SGA) neonate; however, it may be observed in around 50% of pregnant women at 11 + 0 to 13 + 6 weeks. This marker therefore has a very low specificity for PE.

A recent meta-analysis reported that first-trimester Doppler examination of the uterine arteries can predict 47.8% of cases of early PE (7.9% false-positive rate), 39.2% of cases of early fetal growth restriction (6.7% false-positive rate) and 26.4% of cases of PE at any stage (6.6% false-positive rate), when using as a cut-off the 90th centile of PI or RI. However, combined screening (including maternal factors, maternal mean arterial blood pressure, uterine artery Doppler and placental growth factor (PIGF) measurement) has superior predictive performance (as detailed later) and, if available, should be preferred over Doppler-based screening.

Second trimester

Recommendation

- Doppler examination of the uterine arteries at the second-trimester scan can be performed either transabdominally or transvaginally, according to local preferences and resources (GOOD PRACTICE POINT).

Second-trimester Doppler examination of uterine arteries: technique. Uterine artery flow resistance can be assessed either transabdominally or transvaginally. The transabdominal technique is similar to that of the first trimester, the main difference being that right and left uterine arteries are identified at the apparent crossover with the external iliac arteries, rather than paracervically. After the arteries are identified, pulsed-wave Doppler is used to obtain the waveforms. When at least three similar consecutive waveforms are obtained, PI is measured, and the presence or absence of early diastolic notching is recorded.

In the transvaginal technique, the woman is asked to empty her bladder and is placed in the dorsal lithotomy position. The ultrasound probe is inserted into the anterior fornix, and the cervix is identified in the midsagittal plane. The probe is then moved into the lateral fornix and the uterine arteries are identified on either side using color Doppler at the level of the internal cervical os. Pulsed-wave Doppler is used to obtain three similar consecutive waveforms. PI can then be measured and the presence or absence of early diastolic notching can be recorded. Examination of the uterine artery Doppler waveform following this approach is feasible in 99% of women.

As in the first trimester, using either a transabdominal or a transvaginal approach, care should be taken to maintain the angle of insonation < 30° and the peak systolic velocity > 60 cm/s to ensure that the uterine artery rather than the arcuate artery is being examined.

Technical advice

- As in the first trimester, uterine artery PI in the second trimester is higher when measured transabdominally (EVIDENCE LEVEL: 2++).
- The 95th centile for mean uterine artery PI is 1.44 for the transabdominal approach and 1.58 for the transvaginal approach at 23 weeks (EVIDENCE LEVEL: 2+).
- The 95th centile of the mean uterine artery PI decreases by about 15% between 20 and 24 weeks, and by <10% between 22 and 24 weeks (EVIDENCE LEVEL: 2++).

Recommendation

- Mean uterine artery PI should be used for prediction of PE. In case of a unilateral placenta, a unilaterally increased PI does not appear to increase the risk for PE if the mean PI is within normal limits (GRADE OF RECOMMENDATION: B).

Similar to the first trimester, when the uterine arteries are examined transvaginally, the PI readings are higher compared with those obtained using the transabdominal approach. In a comparative series of 96 women between 20 and 26 weeks, the mean uterine artery PI was 1.07 with the transvaginal and 0.96 with the transabdominal approach. The median angle of insonation was lower using transvaginal ultrasound (10.0° vs 17.5°); however, PI being a ratio, the most likely reason for the differences between transabdominal and transvaginal values is the different anatomical location of the examination. Both techniques have similar reproducibility (interobserver concordance coefficient, 0.86 vs 0.81; limits of agreement, ± 35%).
The 95th centile of the mean uterine artery PI at 23 weeks obtained with a transabdominal approach has been reported as 1.44^41, and that obtained with a transvaginal approach as 1.58^43. The 95th centile of the mean uterine artery PI decreases by about 15% between 20 and 24 weeks, and by <10% between 22 and 24 weeks^44.

In unilaterally located placenta, resistance to uterine flow on the contralateral side is commonly increased. A unilaterally increased PI does not appear to be associated with a higher risk for PE if the mean PI is within normal limits^45.

Performance of second-trimester prediction of PE. The predictive performance of uterine artery Doppler is better for early-onset PE; a study of more than 32,000 women indicated that, for a false-positive rate of 10%, uterine artery PI alone can predict 85% of cases of early-onset PE, compared with 48% of late-onset cases when combined with maternal factors^46. Furthermore, the risk for early PE appears to increase with increasing uterine artery resistance; a mean PI of 1.6 was associated with a positive likelihood ratio (LR+) of 3.07, a mean PI of 1.8 with a LR+ of 8.00 and a mean PI of 2.2 with a LR+ of 27.08 (transvaginal measurements)^46. In general, uterine artery Doppler velocimetry tends to predict better the more severe and complicated cases. For example, mean PI >1.65 (on transvaginal ultrasound) was found to predict 41% of all PE cases, but, when subgroups were analyzed, the prediction rate was 69% for PE with fetal growth restriction and 24% for PE with normal fetal growth^17. This finding can be explained by the fact that high impedance in the uterine arteries reflects defective placentation, which has a concomitant deleterious effect on fetal growth.

Bilateral diastolic notching in the uterine artery Doppler waveform is also associated with increased risk for PE^17,41,42,46,47. However, for the same false-positive rate, uterine artery PI is associated with better sensitivity than notch^42, rendering unnecessary its addition to screening, although not all studies support this^47.

In terms of maternal health, a study of 491 women undergoing transthoracic echocardiography at the time of second-trimester screening for PE, showed that women with mean uterine artery PI > 90th centile (which was 1.25 in that study) had a higher prevalence of previously undiagnosed, functionally significant, cardiac defects (4.4%) compared with women with normal mean uterine artery PI (0.3%). This prevalence was particularly high among migrant women^48.

Technical advice

- Although uterine artery velocimetry can be assessed transvaginally, the most common method of uterine artery Doppler examination in the third trimester uses a transabdominal approach (EVIDENCE LEVEL: 4).

The 95th centile for mean uterine artery PI is 1.17 obtained using a transabdominal approach at 30–34 weeks (EVIDENCE LEVEL: 2+).

Recommendations

- There are currently no randomized trials on the impact of third-trimester screening for PE on maternal, fetal and neonatal outcomes; consequently, its implementation into routine practice cannot be recommended at present (GOOD PRACTICE POINT).
- Mean uterine artery PI should be used for prediction of PE, if this is offered in the third trimester (GRADE OF RECOMMENDATION: B).

The standard method for Doppler examination of the uterine arteries in the third trimester is by a transabdominal approach, similar to the second trimester^34,41.

In a large, multicenter study in the UK, the 90th and 95th centiles for mean uterine artery PIs between 30 + 0 and 34 + 6 weeks were 1.03 and 1.17, respectively^49. Mean uterine artery PI > 95th centile (5% false-positive rate) alone could predict 54% of PE before 37 weeks and 14% of PE ≥ 37 weeks. The corresponding rates for mean PI > 90th centile (10% false-positive rate) were 68% and 14%, respectively, highlighting the poor performance of Doppler studies alone in predicting term PE^49.

The same group assessed the effectiveness of screening at 35–37 weeks, finding that uterine artery Doppler alone was a poor predictor for PE; even when it was combined with maternal factors, the detection rate was 26% for a 5% false-positive rate and 37% for 10% false-positive rate^50.

Reversed uterine artery diastolic flow has been reported sporadically in the third trimester and, in cases with placental insufficiency, was associated with adverse outcome, such as progression to eclampsia or intrauterine demise^51,52.

Longitudinal changes in Doppler indices

Technical advice

- Increased uterine artery resistance persisting from first trimester to second trimester may identify women at highest risk for PE (EVIDENCE LEVEL: 2++).

Recommendation

- Given that preventive strategies (e.g. low-dose aspirin) for reducing the risk of PE are effective if started in the first trimester, their use should be commenced as soon as possible in women identified as being high-risk, without waiting to assess the evolution of Doppler in the second trimester (GOOD PRACTICE POINT).

As well as cross-sectional measurements of Doppler indices, their longitudinal changes have been studied in
the prediction of PE. A study examining sequentially uterine artery Doppler at 11–14 and 19–22 weeks (n = 870) reported that 73% of cases with increased PI in the first trimester had normalized by the second trimester. Women with increased PI in both first and second trimesters were at highest risk (37.5%) for adverse pregnancy outcome, i.e. growth restriction or hypertensive disorder. In contrast, women with normal PI in the first trimester had a 95% chance of normal measurements in the second trimester, and this was the group with the lowest incidence of adverse outcome (5.3%)53.

Another index that has been tested is the difference between second-trimester and first-trimester uterine artery PI, both expressed in MoM for the corresponding gestational ages. An increasing gap between first- and second-trimester uterine artery PI MoM, reflecting defective spiral artery transformation, appeared to be the most accurate predictor for early (AUC, 0.85) and preterm (AUC, 0.79) PE54. Another study on 104 women with increased uterine artery PI at 20–22 weeks reported that abnormal findings persisted at 26–28 weeks in 59.6% of cases; women with persistently increased PI had a greater risk for PE (16% vs 1%), SGA (32% vs 1%) and admission to a neonatal intensive care unit (26% vs 4%), compared with women in whom the PI normalized55.

A problem with sequential assessment of Doppler is that the window of opportunity for preventative intervention (i.e. gestational age < 16 weeks) is missed if intervention is delayed pending a subsequent scan.

Placental volume

Recommendation

• Although placental volume and vascularization indices have been assessed as predictors for PE, they cannot be recommended for screening purposes given that their reproducibility is limited, they require special equipment and they are time-consuming (GOOD PRACTICE POINT).

Shortly after the introduction of three-dimensional ultrasound, first-trimester placental volume was tested as a potential predictor of PE. In one of the initial studies, placental volume at 12 weeks was compared with uterine artery Doppler examination at 22 weeks; the predictive performances of these two methods were: 20% and 28%, respectively, for PE without SGA; 31% and 46%, respectively, for PE with SGA; and 50% and 50%, respectively, for early PE56. Similarly, placental volume had predictive performance comparable to that of first-trimester mean uterine artery PI for PE (56% vs 50%) and for PE requiring delivery before 32 weeks (67% vs 67%)57. However, these findings have not been confirmed by other studies58–60. Three-dimensional placental vascularization indices have also been evaluated58–62; however, they can be affected by attenuation due to depth and tissue interfaces, the use of different ultrasound settings and the lack of robust reproducibility (intra- and interobserver intraclass correlation coefficients, < 0.48 and < 0.66, respectively)63, all of which limit their clinical applicability.

Although good reproducibility is reported for placental volume calculation64,65, normal values vary considerably (first-trimester mean placental volume has been reported to range from 45 to 74 mL59,61,64–66). Moreover, placental volume calculation is currently a non-automated measurement subject to operator variability, and can be time-consuming, depending on the number of frames used for volume analysis57.

COMBINED SCREENING STRATEGIES

Recommendations

• A combination of maternal factors, maternal arterial blood pressure, uterine artery Doppler and PIGF level at 11–13 weeks appears to be the most efficient screening model for identification of women at risk of PE (GRADE OF RECOMMENDATION: B).

• Given the superiority of combined screening, the use of Doppler cut-offs as a standalone screening modality should be avoided if combined screening is available (GRADE OF RECOMMENDATION: B).

• The transabdominal approach is preferred for calculating first-trimester individual patient risk, as most screening algorithms were developed using this approach (GOOD PRACTICE POINT).

Maternal risk factors (history, demographics, cardiovascular and metabolic profile) and placental markers (uterine artery resistance and biomarkers) for the development of PE have been identified. Therefore, the current trend in screening involves combining the presence or absence of multiple risk factors in order to calculate a personalized risk and then tailoring management accordingly, similar to screening for chromosomal abnormalities11. On a population basis, combined screening aims at improving on the sensitivity of single-marker screening and, at the same time, reducing the false-positive rate.

Combined screening has been the subject of approximately 400 PubMed articles up to April 2018. Multiple studies have shown that women who go on to develop PE have, on average, higher mean arterial pressure68, higher concentrations of maternal serum soluble fms-like tyrosine kinase-1 (sFlt-1)69,70 and alpha-fetoprotein (AFP)71, and lower concentrations of pregnancy-associated plasma protein-A (PAPP-A)72 and PlGF70,73, along with higher resistance in the uterine arteries74, compared with women who do not. For all these predictors, the performance was better for early than for late PE75,76, and was better when assessed later in pregnancy than at 11–13 weeks, i.e. closer to the development of PE68–71,73–75.

Data from almost 36 000 prospectively followed singleton pregnancies showed that, at a false-positive rate of 10%, maternal factors alone (including age, weight, ethnic origin, reproductive and medical history and smoking) could predict 49% of PE < 37 weeks. The addition of
PIGF increased this rate to 60%, and combined screening with maternal characteristics, mean uterine artery PI, mean arterial pressure and PIGF at 11–13 weeks predicted 75% of cases of PE < 37 weeks and 47% of cases of PE ≥ 37 weeks. The same protocol was used in the context of the ASPRE trial; in this trial, combined screening was followed by randomization to aspirin or placebo in those at high risk. This algorithm, combining maternal factors, mean arterial pressure, mean uterine artery PI and PIGF, achieved a 100% detection rate for PE developing < 32 weeks, 75% detection for PE developing < 37 weeks and 43% detection for PE developing ≥ 37 weeks, for a 10% false-positive rate. The fetal fraction of cell-free DNA in the maternal circulation is also significantly associated with maternal and fetal risk factors for PE, and there is a significant relationship between low fraction and increased risk for PE; however, its impact on first-trimester screening has not been evaluated in prospective studies.

Similar to the first trimester, a second-trimester model using uterine artery PI, maternal factors (including BMI, ethnic origin, previous obstetric history, smoking status, type of conception, medical history) and mean arterial blood pressure may detect as many as 100% of women who will develop early PE for a false-positive rate of 10%; the sensitivity for late PE and gestational hypertension is 56.4% and 54.1%, respectively.

In the third trimester, a combination of maternal factors and sFlt-1 level may predict 83% and 38% of PE before and after 37 weeks, respectively, for a false-positive rate of 5%; the corresponding figures for a 10% false-positive rate are 94% and 51%, respectively. Prior screening in the first and/or second trimesters does not further improve prediction accuracy over that of third-trimester screening alone. Ethnic origin affects the sensitivity and false-positive rate of third-trimester prediction, with both being higher in women of Afro-Caribbean origin. Maternal and biochemical markers become more important for the prediction of PE in late pregnancy. Thus, among several potential factors, mean arterial pressure, PIGF and sFlt-1 were the ones associated with the prediction of PE between 30–34 weeks and 35–37 weeks. In contrast, the addition of uterine artery PI and maternal cardiovascular parameters did not improve the prediction of PE after 35–36 weeks. The sFlt-1/PIGF ratio as a standalone marker can predict more than 75% of cases which will develop PE within 4 weeks, but its sensitivity is significantly higher at 31–34 than at 35–37 weeks (false-positive rate, 1.7% vs 9.6%).

A common concern with combined screening models is that they may perform differently when applied prospectively in populations different from the ones from which they were derived. The performance of the combined screening model used for the ASPRE trial (maternal factors, mean arterial pressure, mean uterine artery PI, PIGF) was practically identical when applied to the dataset used for its development and the actual clinical trial. In fact, this screening model was found to be considerably more efficient for the prediction of early PE than were the history-based screening policies recommended by both the American College of Obstetricians and Gynecologists and the UK National Institute for Health and Care Excellence.

ASSESSMENT OF MATERNAL HEMODYNAMICS

Recommendation

- Despite the fact that maternal hemodynamic assessment may be of value in prediction of PE, there are still too few data to support its routine implementation in clinical practice as a standalone test (GOOD PRACTICE POINT).

Cardiovascular adaptation plays a critical role in the hemodynamic changes observed in normal pregnancy. Failure of this adaptation, and possibly subclinical prepregnancy cardiovascular dysfunction, have been associated with the risk of developing PE. Women who develop PE have prepregnancy cardiovascular risk factors, demonstrating increased arterial stiffness and impaired cardiac function at the time of the clinical diagnosis, as well as several weeks before clinical onset of the pathology and several months after the index pregnancy. The cardiovascular implications of PE appear to continue long-term, as shown both by increased frequency of prolonged subclinical impairment of systolic biventricular function and endothelial function, and by the increased risk of cardiovascular morbidity later in life. The hazard ratio for developing cardiovascular disease later in life is as high as 5.4 in women who had severe PE/eclampsia. Moreover, compared to women without recurrent disease, women who develop PE in a subsequent pregnancy tend to have altered cardiovascular parameters between pregnancies, which may hinder their normal adaptation in the next pregnancy.

The simplest hemodynamic parameter with established value in the context of combined screening is maternal mean arterial pressure. Additionally, arterial stiffness can be estimated by ultrasound and this parameter has been found to differ significantly between women with PE and those with normal pregnancy. In a systematic review of 23 studies evaluating arterial stiffness in association with hypertensive disease of pregnancy, women with PE had elevated arterial stiffness both during and after pregnancy, and to a greater extent than those with gestational hypertension. Interestingly, more severe PE was associated with greater arterial stiffness. Both pulse-wave velocity analysis and the augmentation index have also been observed to be higher in the subclinical stage (as early as 11 weeks) in women who go on to develop PE. Cross-sectional and longitudinal studies have demonstrated that arterial stiffness indices could be used as a screening test, as early as 11 weeks’ gestation, to predict subsequent development of early- and late-onset PE, especially when combined with other maternal variables, such as central systolic blood pressure.
Lower flow-mediated dilatation has been reported in the first and second trimesters among high-risk women who subsequently developed PE109,110.

Cardiac output was significantly higher at 11–13 weeks in women who later developed PE or gestational hypertension, compared with that in women with uncomplicated pregnancy94. When combined with other maternal variables, for a 10% false-positive rate, the detection rate was 43.4% for all types of PE, 52% for PE without a SGA fetus and 23.3% for gestational hypertension94. Women who subsequently develop PE have evidence of left ventricular concentric remodeling in mid-gestation97.

Despite the fact that maternal hemodynamics are promising screening markers of PE, a combined approach taking into account maternal characteristics and biochemical markers is required to reach a clinically useful prediction model. Meanwhile, as assessment of maternal hemodynamics is being performed increasingly in PE studies, it is imperative that relevant devices and techniques are used appropriately in pregnant populations111.

MANAGEMENT AFTER SCREENING

Recommendation

- There is convincing evidence that low-dose aspirin can decrease significantly the risk for development of early PE, when administration commences at the time of first-trimester screening (GRADE OF RECOMMENDATION: A).

First trimester

Currently, the American College of Obstetricians and Gynecologists (ACOG)112, the UK National Institute for Health and Care Excellence (NICE)113 and the Society of Obstetricians and Gynaecologists of Canada (SOGC)114, among others, recommend administering low-dose aspirin, commencing before 16 weeks, to women at risk for placental insufficiency.

Most of the studies on which current recommendations are based classified women as high risk according to historical or medical factors rather than using current screening methods (i.e. maternal factors, Doppler and biochemistry). In the ASPRE study, 1776 women at high risk for PE based on first-trimester combined screening were randomized to either aspirin (150 mg daily at bedtime) or placebo, from 11–14 weeks to 36 weeks' gestation10. The dose of 150 mg was selected in line with evidence that a significant proportion (10–30%) of patients show aspirin resistance at lower doses115, and *in-vitro* data showing that the optimal dose to improve trophoblast function is the equivalent of 150 mg *in vivo*116. The timing of administration was based on data indicating the presence of a diurnal effect in response to aspirin, with optimal effectiveness for bedtime administration117. The ASPRE trial found that aspirin reduced the risk for PE before 37 weeks by 62% (from 4.3% to 1.6%). Aspirin also reduced the risk of PE before 34 weeks by 82%, but this effect did not reach statistical significance due to the low absolute rates (0.4% vs 1.8%)10. The beneficial effect of aspirin appeared to depend on the degree of compliance, with the greatest risk reduction observed in women with compliance $\geq 90\%$118.

First-trimester screening and intervention with aspirin appears to be cost-effective, combining the prevention of a significant proportion of early-onset cases with cost savings for the health system119.

Second trimester

Second-trimester prediction of PE appears to be at least as sensitive70,78 as prediction in the first trimester, but its value is limited by the lack of effective interventions at this gestational stage. While aspirin commenced in the first trimester appears to reduce the development of PE120,121, the same intervention seems ineffective when started after 20 weeks120. Although it is too late to prevent the development of PE after second-trimester prediction, the knowledge can still be useful in guiding follow-up and management of a pregnancy at risk122,123. However, the clinical impact of intensified follow-up has yet to be proven. A Spanish trial randomized 11 667 women who attended for a routine second-trimester scan to Doppler or non-Doppler group. It was found that Doppler velocimetry identified 60% of the women who went on to develop PE, but the intensification of their care did not result in better short-term maternal or perinatal outcome compared with that of women who did not have a Doppler examination at the second-trimester scan124.

Third trimester

Third-trimester testing can identify the majority of women who will develop PE in the subsequent weeks80,125. It has been described as part of a longitudinal risk-assessment scheme focused mainly on early detection, which involves detailed screening in the first trimester for stratification for all major obstetric complications, and then contingent screening based on the risk reassessment at each visit125,126. The validation and audit of this strategy is the subject of ongoing research.

MULTIPLE PREGNANCY

Recommendations

- Due to increased placental mass in twin pregnancy, resulting in lower mean resistance in the uterine arteries, twin-specific reference ranges are preferred for Doppler examination, if available (GRADE OF RECOMMENDATION: B).
- The combined screening (maternal factors, uterine artery PI, mean blood pressure, PI GF) algorithm for singletons can also be used in twins and can identify more than 95% of women with twin pregnancy who will develop PE. However, the examiner should be aware
Twin pregnancy is a risk factor for obstetric complications, including PE. The increased placental mass in twin pregnancy results in a lower mean uterine artery resistance compared with that of singleton pregnancy at the same gestational age, and this can be observed even during the first trimester. Consequently, using reference ranges for singleton pregnancies, which are higher than those for twins, may result in reduced sensitivity of Doppler screening. A study comparing the two approaches reported that twin-specific ranges resulted in a sensitivity of 36.4%, for a 12% false-positive rate; if the standard cut-offs for singleton pregnancy were used, the sensitivity would be 18% for a 1.7% false-positive rate.

Excluding cases with subsequent twin-to-twin transfusion syndrome, first-trimester mean uterine artery PI was 46% higher in twin pregnancies that developed early-onset PE and 22% higher in those developing late PE, compared with uncomplicated twin pregnancies.

In a study of dichorionic twin pregnancies from 17 to 38 weeks, the 95th centile for the mean uterine artery PI, measured transabdominally, was 1.21 at 21 weeks, 1.16 at 22 weeks, 1.12 at 23 weeks and 1.09 at 24 weeks.

Using the transvaginal approach, a cut-off of 1.5 for mean uterine artery PI at 22–24 weeks had a sensitivity for PE of 33.3%, for a 3.3% false-positive rate (monochorionic and dichorionic twins).

Chorionicity could theoretically have an impact on the extent of uterine hemodynamic adaptation, as monochorionic twins have different placental masses and architecture. Indeed, a survival-time model analysis calculated that, for a reference population standardized for maternal characteristics, the risk for PE at <37 weeks’ gestation is 8% for dichorionic twins and 14% for monochorionic twins, as compared with 0.6% for singleton pregnancy. A study in the first trimester reported higher uterine artery resistance in monochorionic compared with dichorionic twins; in fact, monochorionic twins had similar resistance to that of singleton fetuses.

As in singleton pregnancy, combined screening in twin pregnancy performs better than does each of its individual components. A recent study assessed first-trimester screening with maternal factors, uterine artery PI, mean arterial pressure, PAPP-A and PlGF, and found that the detection rate of PE requiring delivery before 32 and 37 weeks was 100% and 99%, respectively, at the cost of a screen-positive rate of 75%. The use of twin-specific charts resulted in only a minor increase in the performance of the model.

Recommendations

- Given that fetal deterioration is an indication for delivery in established PE, fetal status should be assessed regularly in these patients.
- The sonographic follow-up in pregnancies affected by PE includes assessment of fetal growth and biophysical profile, and fetal Doppler studies.
- As there have been no randomized controlled trials, the components, frequency and impact of ultrasound surveillance in pregnancies affected by PE have yet to be determined.
- Examination of fetal biometry, amniotic fluid volume, uterine artery, umbilical artery (UA) and fetal middle cerebral artery (MCA) PI and cerebroplacental ratio (CPR), as well as placental visualization to exclude abruption, should be considered in women presenting with headache, abdominal pain, bleeding and/or reduced fetal movements.

PE is commonly associated with fetal growth restriction, and these fetuses tend to be delivered earlier and deteriorate faster compared with growth-restricted fetuses of normotensive mothers. Therefore, the identification and follow-up of fetal growth restriction is of paramount importance for the optimization of perinatal outcome in PE.

B-mode ultrasound

Biometry. Fetal biometry can be assessed to identify a SGA fetus and to predict SGA newborns.

Amniotic fluid index. The amount of amniotic fluid can be assessed by the amniotic fluid index (AFI) or by the maximum vertical pocket (MVP): MVP < 2 cm and/or AFI < 5 cm are considered as cut-off values for the diagnosis of reduced amniotic fluid or oligohydramnios. Compared with AFI, measurement of MVP may result in fewer interventions without increasing adverse perinatal outcome.

Fetal movements. As part of the fetal biophysical profile, fetal breathing movements, body/limb movements...
and muscular tone (e.g. extension and flexion of a fetal extremity or opening and closing of the hand) should be observed142. These three components, plus the assessment of amniotic fluid volume and fetal heart rate, constitute the fetal biophysical profile. Positive findings for each component are assigned a value of 2, with the total biophysical profile score (BPP score) ranging from 0 to 10. A BPP score ≥ 8 is considered to be normal and a manifestation of fetal wellbeing. A BPP score of 6 is an inconclusive result, and the test should be repeated. A BPP score ≤ 4 is a non-reassuring fetal test result, and delivery should be considered143,144. Biophysical profile testing is used mostly in the USA, whereas clinical management in Europe is based mostly on Doppler examination. There are no data for the comparative cost-effectiveness of the two methods.

Placenta. Visualization of the placenta might help to exclude signs suggestive of severe PE, such as a thickened placenta with diffuse echogenicity most probably due to edema, a thin placenta with reduced vascularization145,146, or cystic regions suggestive of infarctions or hematomas147,148. Women with PE are at risk of partial or total abruption; therefore, evaluation of the placenta–myometrium interface is important149,150. Sonographic findings related to placent al abruption include retrolaplacental hematoma (hyperechoic, isoechoic, hypoechoic), preplacental hematoma, increased placent al thickness and echogenicity, subchorionic collection and marginal collection of blood. However, the sensitivity of ultrasound in diagnosing placental abruption is poor, as approximately 50–75% of these cases may be missed by ultrasound examination151,152. Chronic abruption, which may be seen as a retrolaplacental sonoluent area on ultrasound imaging, and oligohydramnios sequence can develop in PE patients153.

Doppler

The four Doppler territories commonly examined for fetal and maternal evaluation are: (1) UA, (2) fetal MCA, (3) fetal ductus venosus and (4) uterine arteries.

Briefly, absent or reversed end-diastolic velocity in the UA is strongly associated with perinatal morbidity/mortality154,155. Reduced MCA-PI $< 10^{th}$ percentile is a sign of brain vasodilatation and has been associated with emergency Cesarean delivery due to non-reassuring fetal heart rate in growth-restricted fetuses156–158. CPR $< 10^{th}$ percentile is considered to be a sign of hemodynamic redistribution, can be observed even before the UA is affected and is an indicator for close fetal surveillance159–161. Reversed a-wave in the ductus venosus is a strong manifestation of fetal cardiac deterioration and is associated with a high risk of perinatal mortality and severe neonatal morbidity162,163. The results of the TRUFFLE trial provide insight into the follow-up of growth-restricted fetuses in PE, as most of its participants either had PE at enrollment or developed it during their follow-up. It was found that optimal long-term outcome for growth-restricted fetuses with abnormal UA flow is achieved when delivery is postponed until the a-wave in the ductus venosus becomes reversed, unless reduced short-term variability on non-stress test is observed meanwhile, prompting immediate delivery157,164,165. Increased resistance in the uterine arteries indicates defective spiral artery transformation and is not useful as an indication for delivery.

Guidelines for fetal Doppler evaluation have been published previously16; further details of Doppler evaluation are beyond the scope of these Guidelines.

Technical advice

- Administration of antihypertensive drugs is not associated with significant changes in maternal and fetal Doppler indices (EVIDENCE LEVEL: 2–).
- Antenatal corticosteroids are associated with a transient decrease in vascular resistance in the UA and ductus venosus (EVIDENCE LEVEL: 2–).
- Data regarding a potential effect of magnesium sulfate on maternal and fetal Doppler indices are inconclusive (EVIDENCE LEVEL: 2–).

Use of labetalol, nifedipine or hydralazine has not been found to be associated with changes in uterine artery or UA Doppler waveforms166–169. However, Grzesiak et al.170 and Lima et al.171 reported a mild reduction in MCA-PI after administration of nifedipine, with no alteration in the other vascular territories. Methyldopa also has no effect on uterine artery resistance in patients with gestational hypertensive disease172.

The effect of antenatal corticosteroids in the fetal circulation has been documented extensively. A transient reduction in vascular resistance and in UA-PI and ductus venosus-PI is generally observed. Absent or reversed end-diastolic or atrial velocities generally improve after the administration of corticosteroids; this effect generally lasts for 48–72 hours, but it can be longer in some fetuses. Some have also reported a mild reduction in MCA-PI; however, no effect of steroids on the uterine artery Doppler waveform has been reported173–176.

There is no consensus regarding the effect of magnesium sulfate on fetal hemodynamics. Some studies found a reduction in PI or in RI of the UA, uterine artery and MCA after the administration of magnesium sulfate177–179, but others found no such effect180.

FUTURE RESEARCH

Recommendation

- Doppler studies need to fulfill quality criteria, including prospective data collection, specific scan for research purposes and examination of consecutive patients (i.e. non-opportunistic recruitment) (GRADE OF RECOMMENDATION: C).
Doppler examination of maternal and fetal vessels has been in use for about two decades, with a significant positive impact on maternal and fetal health. However, both older and newer Doppler studies may be biased, for different reasons. Older studies were performed using ultrasound machines with lower image resolution than the ones used now, and it is not certain whether results would be the same if newer ultrasound technology had been used. Newer Doppler studies were performed at a time when the value of Doppler was already established and this may have resulted in two forms of bias: intention-to-treat bias, i.e. the Doppler findings may have affected the management, and hence the natural history, of any condition diagnosed; and expected-value bias, i.e. as normal ranges of Doppler measurements became available, examiners might subconsciously have adjusted their measurements towards the expected normal range, potentially biasing any retrospective study using these data. A recent systematic review showed that the vast majority of Doppler studies suffer from methodological limitations, and proposed a set of criteria which should be applied in future high-quality studies. These criteria involve, among others: prospective data collection, a specific scan for research purposes and examination of consecutive patients (i.e. non-opportunistic recruitment).

SUMMARY OF RECOMMENDATIONS

Relevant information available to the examiner

- Examiners involved in screening for PE should have up-to-date knowledge regarding major risk factors for PE (GOOD PRACTICE POINT).

Screening for pre-eclampsia using ultrasound

Which Doppler index to use

- The PI should be used for examination of uterine artery resistance in the context of PE screening (GRADE OF RECOMMENDATION: B).

First trimester

- Doppler examination of the uterine arteries at 11 + 0 to 13 + 6 weeks can be performed either transabdominally or transvaginally, according to local preferences and resources (GOOD PRACTICE POINT).
- Standardized methodology, as described in these Guidelines, should be followed for assessment of the uterine artery Doppler indices (GOOD PRACTICE POINT).
- Mean uterine artery PI should be the Doppler index of choice for screening in the first trimester (GRADE OF RECOMMENDATION: B).
- Given that maternal factors can affect uterine artery PI, its inclusion in a multifactorial screening model should, whenever feasible, be preferred over its use as a standalone test with absolute cut-offs (GRADE OF RECOMMENDATION: B).

Second trimester

- Doppler examination of the uterine arteries at the second-trimester scan can be performed either transabdominally or transvaginally, according to local preferences and resources (GOOD PRACTICE POINT).
- Mean uterine artery PI should be used for prediction of PE. In case of a unilateral placenta, a unilaterally increased PI does not appear to increase the risk for PE if the mean PI is within normal limits (GRADE OF RECOMMENDATION: B).

Third trimester

- There are currently no randomized trials on the impact of third-trimester screening for PE on maternal, fetal and neonatal outcomes; consequently, its implementation into routine practice cannot be recommended at present (GOOD PRACTICE POINT).
- Mean uterine artery PI should be used for prediction of PE, if this is offered in the third trimester (GRADE OF RECOMMENDATION: B).

Longitudinal changes in Doppler indices

- Given that preventive strategies (e.g. low-dose aspirin) for reducing the risk of PE are effective if started in the first trimester, their use should be commenced as soon as possible in women identified as being high-risk, without waiting to assess the evolution of Doppler in the second trimester (GOOD PRACTICE POINT).

Placental volume

- Although placental volume and vascularization indices have been assessed as predictors for PE, they cannot be recommended for screening purposes given that their reproducibility is limited, they require special equipment and they are time-consuming (GOOD PRACTICE POINT).

Combined screening strategies

- A combination of maternal factors, maternal arterial blood pressure, uterine artery Doppler and PlGF level at 11–13 weeks appears to be the most efficient screening model for identification of women at risk of PE (GRADE OF RECOMMENDATION: B).
- Given the superiority of combined screening, the use of Doppler cut-offs as a standalone screening modality should be avoided if combined screening is available (GRADE OF RECOMMENDATION: B).
- The transabdominal approach is preferred for calculating first-trimester individual patient risk, as most screening algorithms were developed using this approach (GOOD PRACTICE POINT).

Assessment of maternal hemodynamics

- Despite the fact that maternal hemodynamic assessment may be of value in prediction of PE, there are still few data to support its routine implementation in
clinical practice as a standalone test (GOOD PRACTICE POINT).

Management after screening

- There is convincing evidence that low-dose aspirin can decrease significantly the risk for development of early PE, when administration commences at the time of first-trimester screening (GRADE OF RECOMMENDATION: A).

Multiple pregnancy

- Due to increased placental mass in twin pregnancy, resulting in lower mean resistance in the uterine arteries, twin-specific reference ranges are preferred for Doppler examination, if available (GRADE OF RECOMMENDATION: B).
- The combined screening (maternal factors, uterine artery PI, mean blood pressure, PI GF) algorithm for singletons can also be used in twins and can identify more than 95% of women with twin pregnancy who will develop PE. However, the examiner should be aware that this is achieved at the cost of a 75% screen-positive rate (GRADE OF RECOMMENDATION: B).

Use of ultrasound in patients with established pre-eclampsia

- Given that fetal deterioration is an indication for delivery in established PE, fetal status should be assessed regularly in these patients (GOOD PRACTICE POINT).
- The sonographic follow-up in pregnancies affected by PE includes assessment of fetal growth and biophysical profile, and fetal Doppler studies (GOOD PRACTICE POINT).
- As there have been no randomized controlled trials, the components, frequency and impact of ultrasound surveillance in pregnancies affected by PE have yet to be determined (GOOD PRACTICE POINT).
- Examination of fetal biometry, amniotic fluid volume, uterine artery, UA and MCA PI and CPR, as well as placental visualization to exclude abruption, should be considered in women presenting with headache, abdominal pain, bleeding and/or reduced fetal movements (GOOD PRACTICE POINT).
- The same tests should be considered for women admitted for PE or with suspected PE, as well as for those with severe PE or HELLP syndrome (GOOD PRACTICE POINT).

Future research

- Doppler studies need to fulfill quality criteria, including prospective data collection, specific scan for research purposes and examination of consecutive patients (i.e. non-opportunistic recruitment) (GRADE OF RECOMMENDATION: C).

GUIDELINE AUTHORS

These guidelines were produced by ISUOG CSC Pre-eclampsia Task Force.
A. Sotiriadis, Second Department of Obstetrics and Gynecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
E. Hernandez-Andrade, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Hutzel Women Hospital, Wayne State University, Detroit, MI, USA
F. da Silva Costa, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
T. Ghi, Obstetrics and Gynecology Unit, University of Parma, Parma, Italy
P. Glanc, Department of Radiology, University of Toronto, Toronto, Ontario, Canada
A. Khalil, Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London, UK; and Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
W. P. Martins, SEMEAR Fertilidade, Reproductive Medicine and Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
A. O. Odibo, Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
A. T. Papageorghiou, Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London, UK; and Nuffield Department of Obstetrics and Gynecology, University of Oxford, Women’s Center, John Radcliffe Hospital, Oxford, UK
L. J. Salomon, Department of Obstetrics and Fetal Medicine, Hospital Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris, Paris Descartes University, Paris, France
B. Thilaganathan, Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London, UK; and Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK

CITATION

REFERENCES

Ghosssein-Doha C, Spaanderman MEA, Al Doulhab R, Van Kuik SMJ, Peeters LL. Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic

perinatal death in early-onset intrauterine growth restriction according to gesta-
tional age and cardiovascular Doppler indices: a multicenter study. Fetal Diagn

163. Baschat AA. Ductus venosus Doppler for fetal surveillance in high-risk pregnancies.

164. Lees CG, Marlows N, van Wassenaer-Leemhuis A, Arabin B, Bilardo CM,
Berezinka C, Calvert S, Derks JB, Deweert JJ, Ferrazzi E, Fusca T,
Ganzvoort W, Hecher K, Martinelli P, Ostermayer E, Papageorgiou AT, Schlem-
bach D, Schneider KT, Thilaganathan B, Todros T, Valcamicone A, Visser GH,
Wolf H. TRUFFLE study group. 2 year neurodevelopmental and intermediate peri-
natal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a

165. Bilardo CM, Hecher K, Visser GHA, Papageorgiou AT, Marlows N, Thila-
ganathan B, Van Wassenaer-Leemhuis A, Todros T, Marsal K, Frusca T, Arabin B,
Group T. Severe fetal growth restriction at 26–32 weeks: key messages from the

166. Baggs MR, Martins WP, Calderon AC, Berezhovski AT, Marinol AC, Duarte G,
Cavalli RC. Changes in fetal and maternal Doppler parameters observed during acute
severe hypertension treatment with hydralazine or labetalol: a randomized controlled trial.

cardiac function after labetalol or pindolol for maternal hypertension in a sheep
model of increased placental vascular resistance. Eur J Obstet Gynecol Reprod Biol

168. Ulhaobsoha H, Osman Bayar U, Kaya C, Ungan B. The effect of nifedipine tocolysis on

169. de Heus R, Mulder FJ, Derks JB, Visser GH. The effects of the tocolytics atosiban and
nifedipine on fetal movements, heart rate and blood flow. J Matern Fetal Neonatal Med

170. Grzeszak M, Ahmed RB, Wilczynski J. 48-hours administration of nifedipine in
spontaneous preterm labor – Doppler blood flow assessment of placental and fetal

171. Lima MM, Souza AS, Diniz C, Porto AM, Amorim MM, Moron AF. Doppler velocitymetry of the uterine, umbilical and fetal middle cerebral arteries in pregn-
nant women undergoing tocolysis with oral nifedipine. Ultrasound Obstet Gynecol

172. Khalil A, Harrington K, Murutkhusnna S, Jauniaux E. Effect of antihypertensive therapy with alpha-methyldopa on uterine artery Doppler in pregnancies with

173. Thrting A, Malcus P, Marsal K. Effect of maternal betamethasone on fetal and
uteroplacental blood flow velocity waveforms. Ultrasound Obstet Gynecol 2011;
37: 668–672.

174. Nozaki AM, Fracisco RP, Fonseca ES, Miyahara S, Zagai M. Fetal hemody-
namic changes following maternal betamethasone administration in pregnancies with

175. Shojani K, Mohammadi N. Comparing the effects of antenatal betamethasone on
Doppler velocimetry between intrauterine growth restriction with and without

176. Pizze J, Dillon KC, Cerekja A. Betamethasone effects on umbilical arteries and
ductus venosus Doppler velocity waveforms in growth-restricted fetuses. J Matern

Effect of the loading dose of magnesium sulfate (MgSO4) on the parameters of
Doppler flow velocity in the uterine, umbilical and middle cerebral arteries in severe

[Doppler of the umbilical and fetal middle cerebral arteries after magnesium sulfate in

179. Farshchian N, Rezavand N, Mohammadi S. Effect of magnesium sulfate on Doppler
parameters of fetal umbilical and middle cerebral arteries in women with severe

180. Twickler DM, McIntire DD, Alexander JM, Leveno KJ. Effects of magnesium
sulfate on preterm fetal cerebral blood flow using Doppler analysis: a randomized

181. Orós D, Ruiz-Martínez S, Staines Urías E, Conde-Aguado A, Villar J, Fabre E,
Papageorgiou AT. Reference ranges for Doppler indices of umbilical and middle
cerebral arteries and cerebral parenchymal ratio: a systematic review. Ultrasound Obstet
Gynecol 2018. DOI: 10.1002/uog.20102.

APPENDIX 1 Levels of evidence and grades of recommendation used in ISUOG Guidelines

Classification of evidence levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>High-quality meta-analyses, systematic reviews of randomized controlled trials or randomized controlled trials with very low risk of bias</td>
</tr>
<tr>
<td>1</td>
<td>Well-conducted meta-analyses, systematic reviews of randomized controlled trials or randomized controlled trials with low risk of bias</td>
</tr>
<tr>
<td>1–</td>
<td>Meta-analyses, systematic reviews of randomized controlled trials or randomized controlled trials with high risk of bias</td>
</tr>
<tr>
<td>2++</td>
<td>High-quality systematic reviews of case–control or cohort studies or high-quality case–control or cohort studies with very low risk of confounding, bias or chance and high probability that the relationship is casual</td>
</tr>
<tr>
<td>2</td>
<td>Well-conducted case–control or cohort studies with low risk of confounding, bias or chance and moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2–</td>
<td>Case–control or cohort studies with high risk of confounding, bias or chance and significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>3</td>
<td>Non-analytical studies, e.g. case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

Grades of recommendation

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least one meta-analysis, systematic review or randomized controlled trial rated as 1++ and applicable directly to the target population; or systematic review of randomized controlled trials or a body of evidence consisting principally of studies rated as 1++ applicable directly to the target population and demonstrating overall consistency of results</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence including studies rated as 2++ applicable directly to the target population and demonstrating overall consistency of results; or evidence extrapolated from studies rated as 1++ or 1+</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence including studies rated as 2++ applicable directly to the target population and demonstrating overall consistency of results; or evidence extrapolated from studies rated as 2+</td>
</tr>
<tr>
<td>D</td>
<td>Evidence of level 3 or 4; or evidence extrapolated from studies rated as 2+</td>
</tr>
</tbody>
</table>

Good practice point
Pautas de práctica de ISUOG: la función del ultrasonido en la detección y seguimiento de la preeclampsia

RESUMEN

Introducción. La hipertensión en el embarazo afecta hasta el 10% de las mujeres embarazadas y la incidencia global combinada de la preeclampsia (PE) es de aproximadamente el 3%. Las diferencias significativas entre los países desarrollados y en desarrollo pueden atribuirse a diferencias reales o a diferencias derivadas de la adquisición de datos. La PE y sus complicaciones contribuyen en gran medida a la morbilidad y mortalidad materna y perinatal en todo el mundo. Dado que la atención oportuna y efectiva puede mejorar los resultados de la PE, el desarrollo de estrategias eficaces de predicción y prevención ha sido uno de los principales objetivos de la atención prenatal y de la investigación.

La PE es una enfermedad multisistémica de origen multifactorial: está relacionada con placentación defectuosa, estrés oxidativo, autoinmunidad, activación de plaquetas y trombina, inflamación intravascular, disfunción endotelial, desequilibrio en la angiogénesis y mala adaptación cardíaca materna. La invasión defectuosa de la placenta está fuertemente asociada con la mayoría de los casos de PE temprana y grave. En contraste, la placentación defectuosa parece ser menos importante para el desarrollo de la PE que se manifiesta más tarde en el embarazo, por ejemplo después de las 34 semanas. En comparación con los embarazos afectados por la enfermedad de aparición temprana, en aquellos complicados con PE a término o cerca de este, la frecuencia de anomalías histológicas de las placentas es significativamente menor, y los factores maternos (p. ej. el síndrome metabólico o la hipertensión crónica) tienen una importancia relativamente mayor. También se observan diferencias entre la PE de aparición temprana y la de aparición tardía en los factores de riesgo, la capacidad de respuesta vascular materna, el rendimiento del cribado y la eficacia de la prevención.

El conocimiento cada vez mayor sobre la fisiopatología de la PE se refleja en las estrategias de cribado actuales, que se basan en el historial, la demografía, los biomarcadores (como la presión arterial) y el Doppler de la arteria uterina.

Actualmente hay más de 10 000 artículos de PubMed relacionados con la detección de la PE, lo que indica el gran interés en este tema. Menos de una quinta parte de estos se refieren a la detección temprana, lo que constituye un avance de la última década. El objetivo de estas Pautas es revisar la evidencia más reciente y, en lo posible, proporcionar recomendaciones basadas en la evidencia con respecto a la función del ultrasonido en el cribado y seguimiento de la PE. Las Pautas se centran en los aspectos técnicos y clínicos del cribado, sin incluir los aspectos económicos y políticos de la salud, como la conveniencia y la rentabilidad del cribado. Además, estas Pautas se elaboraron partiendo del supuesto de que se dispone de los recursos necesarios para la realización del cribado y el seguimiento (equipo, examinadores y conocimientos especializados). Los pasos y procedimientos descritos en estas Pautas no tienen la intención de constituir un estándar legal para el servicio clínico.

ISUOG 实践指南：超声在子痫前期筛查和随访中的作用

引言

妊娠期高血压疾病及多达 10% 的孕妇, 子痫前期（pre-clampsia, PE）总的全球发病率约为 3%。发达国家和发展中国家存在明显差异，可能是真实差异或是数据采集造成的差异所致。PE 及其并发症是影响全球孕妇围产期发病率和死亡率的一个重要因素。及时、有效的治疗能够改善 PE 结局，因此发展有效的预防和治疗方法已经成为产前保健和研究的一个主要目标。

PE 是一种多因素导致的多系统疾病，包括胎盘形成障碍、氧化应激、自身免疫、血小板和凝血酶激活、血管内炎症、内皮功能障碍、血管生成失衡、产妇心脏不适应，胎盘植入障碍与大多数早发型重度 PE 呈强相关。相反，胎盘形成障碍似乎对晚发型 PE（如孕 34 周后）的发生影响不大。与早发型 PE 孕产妇相比，足月或接近足月时发生 PE 的孕产妇其胎盘组织学异常的发生率明显较低，母亲因素（如代谢综合征或长期高血压）具有较大意义。早发型和晚发型 PE 相比，危险因素、母亲血管反应、筛查能力和预防效能也存在差异。

目前的筛查方法反映了对 PE 病理生理学的了解逐渐加深，筛查方法是基于病史、流行病学、生物标志物（包括血压）和子宫动脉多普勒检查。

目前 PubMed 中收录了 10 000 多篇有关 PE 筛查的文章，表明人们非常关注这一问题。其中不到五分之一的文章探讨了早期筛查，这是过去十年取得的进展。本指南的目的是回顾最新的证据，如果可能，为超声在 PE 筛查和随访中的作用提供循证推荐。本指南关注筛查的技术和临床方面，并未扩展到卫生经济学和政策问题，包括筛查的合理性和成本-效益。而且指南的制定是假设能够获得筛查和随访所需的资源（设备、检查人员、专家）。本指南所描述的步骤和程序并不是作为临床服务的法律标准。